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The Bernstein operator Bn reproduces the linear polynomials, which are therefore
eigenfunctions corresponding to the eigenvalue 1. We determine the rest of the
eigenstructure of Bn . Its eigenvalues are

* (n)
k :=

n !
(n&k)!

1
nk , k=0, 1, ..., n,

and the corresponding monic eigenfunctions p(n)
k are polynomials of degree k, which

have k simple zeros in [0, 1]. By using an explicit formula, it is shown that p (n)
k con-

verges as n � � to a polynomial related to a Jacobi polynomial. Similarly, the dual
functionals to p (n)

k converge as n � � to measures that we identity. This diagonal
form of the Bernstein operator and its limit, the identity (Weierstrass density
theorem), is applied to a number of questions. These include the convergence of
iterates of the Bernstein operator and why Lagrange interpolation (at n+1 equally
spaced points) fails to converge for all continuous functions whilst the Bernstein
approximants do. We also give the eigenstructure of the Kantorovich operator.
Previously, the only member of the Bernstein family for which the eigenfunctions
were known explicitly was the Bernstein�Durrmeyer operator, which is self
adjoint. � 2000 Academic Press
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1. INTRODUCTION

It is well known that the Bernstein operator Bn : C[0, 1] � C[0, 1],
n=1, 2, ..., defined by

Bn f (x) := :
n

k=0
\n

k+ xk(1&x)n&k f \k
n+ , (1.1)

reproduces the linear polynomials, which are therefore eigenfunctions
corresponding to the eigenvalue 1. There are a number of other forms for
Bn f from which the remaining eigenstructure of Bn is more apparent. The
simplest of these to deal with is the expansion in terms of the monomials
(see, e.g., Widder [Wi41; p. 155])

Bn f (x)= :
n

j=0
\ n

j+ x j 2 j
1�n f (0). (1.2)

Here 2 j
h is the j th order forward difference operator

2 j
h f (x) := :

j

i=0

(&1) j&i \ j
i+ f (x+ih),

which annihilates polynomials of degree < j. Let ek be the monomial x [
xk. It follows from (1.2) that Bn maps polynomials of degree k=0, 1, ..., n
to polynomials of degree k (is degree reducing) and so has an eigenfunction
of degree k corresponding to the eigenvalue

* (n)
k =\n

k+ 2k
1�nek(0)=

n !
(n&k)!

1
nk , k=0, 1, ..., n. (1.3)

This observation can be found in Berens and DeVore [BD80]. Let p (n)
k

denote the corresponding monic eigenfunction of degree k, and take

p (n)
0 (x) :=1, p (n)

1 (x) :=x&1�2. (1.4)

The paper is set out as follows.
In Section 2, we give an explicit description of this diagonal form of the

Bernstein operator. This includes a formula for the eigenfunctions p (n)
k in

terms of the monomial basis, and a description of the dual functionals to
them, together with some symmetry properties. Previously, the only mem-
ber of the Bernstein family for which the eigenfunctions were known
explicitly was the Bernstein�Durrmeyer operator, which is self adjoint.
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In Section 3, we use the theory of totally positive matrices to show that
p(n)

k has k distinct real roots in the interval [0, 1] and to describe their
location. It is observed numerically that the zeros of successive eigenfunc-
tions of Bn interlace, but a proof of this fact using the oscillatory properties
of the Bernstein kernel has yet to be given.

In Section 4, we show that p (n)
k converges as n � � to a polynomial

related to a Jacobi polynomial. Limits of the dual functionals are also
obtained. These results are compared with the eigenstructure of the
Bernstein�Durrmeyer operator.

Sections 5�7 contain applications of the previous sections. Simple and
illuminating proofs of results for iterated Boolean sums of Bn , limits of
iterates of Bn , and representations of an associated C0 -semigroup are
given. The eigenstructure is used to compare the approximation properties
of Bn with Ln , the operator of Lagrange interpolation at the same n+1
equally spaced points. This allows the possibility of defining a family
Bernstein quasi-interpolants which vary from Bn to Ln . The eigenstructure
of the Kantorovich operator is deduced from the eigenstructure of the
Bernstein operator.

We conclude with some comments about the multivariate Bernstein
operator. To simplify the presentation, a number of examples, including an
alternative method for computing the dual functionals, are arranged in the
Appendix.

2. THE DIAGONALISATION AND DESCRIPTION
OF THE EIGENFUNCTIONS

Since Bn is degree reducing, writing the eigenfunction equation

Bn p (n)
k =* (n)

k p (n)
k (2.1)

relative to a basis [b0 , b1 , ..., bn] of 6n , with the degree of bj equal to j,
leads to an upper triangular system. We now solve this system when the bj

are the monomials ej .
The shifted factorial function is defined by

(x) j :=x(x+1) } } } (x+ j&1), j=1, 2, ..., (x)0 :=1,

and the Stirling numbers of the second kind S(k, j) are defined by

xk= :
k

j=0

S(k, j) x(x&1) } } } (x& j+1).
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Note the well-known identity

S(k, j)=
1
j !

:
j

i=0
\ j

i+ (&1) j&i i k, 0� j�k. (2.2)

Theorem 2.3 (Diagonalisation). The Bernstein operator Bn can be
represented in the diagonal form

Bn f = :
n

k=0

* (n)
k p (n)

k + (n)
k ( f ), \f # C[0, 1], (2.4)

with * (n)
k and p (n)

k its eigenvalues and eigenfunctions and + (n)
k the dual

functionals to p (n)
k . The eigenvalues are given by

* (n)
k :=

n !
(n&k)!

1
nk

=1 \1&
1
n+\1&

2
n+ } } } \1&

k&1
n + , k=0, ..., n, (2.5)

and they satisfy

1=* (n)
0 =* (n)

1 >* (n)
2 >* (n)

3 > } } } >* (n)
n >0.

The eigenfunction for * (n)
k is a polynomial of degree k given by

p (n)
k (x)= :

k

j=0

c( j, k, n) x j=xk&
k
2

xk&1+lower order terms, (2.6)

where the coefficients can be computed using the recurrence formula

c(k, k, n) :=1, c(k&1, k, n) := &k�2,

c(k& j, k, n) :=
1

(n&k+1) j&n j :
j&1

i=0

niS(k&i, k& j) c(k&i, k, n),

j=2, ..., k. (2.7)

The dual functional + (n)
k # span[ f [ f ( j�n) : j=0, 1, ..., n], defined on

C[0, 1], satisfies

+ (n)
k ( p (n)

i )=$ ik , \i, k, (2.8)

and is given by

+ (n)
k ( f )= :

n

j=0

v( j, k, n) f \ j
n+ , k=0, ..., n, (2.9)

136 COOPER AND WALDRON



where the (n+1)_(n+1) matrix of coefficients V :=[v( j, k, n)]n
j, k=0 is the

inverse of

P :=[ p (n)
i ( j�n)]n

i, j=0 .

The eigenfunctions and dual functionals have the symmetries

p (n)
k (x)=(&1)k p (n)

k (1&x), + (n)
k ( f )=(&1)k + (n)

k ( f b R), (2.10)

where R: x [ 1&x is reflection about the point 1�2. The eigenfunctions of
degree �2 can be factored as follows

p (n)
2 j (x)=x(x&1) q(x&1�2),

(2.11)
p (n)

2 j+1(x)=x(x&1�2)(x&1) q(x&1�2), j=1, 2, ...,

where in each case q is an even monic polynomial.

Proof. We have already seen that the eigenvalues of Bn are given
by (2.5) and the linear polynomials are eigenfunctions for eigenvalue
*(n)

0 =* (n)
1 =1, for which the p (n)

0 , p (n)
1 of (1.4) are clearly a basis which

satisfies (2.6) and (2.7). It remains only to consider the 1-dimensional
*(n)

k -eigenspace of polynomials of exact degree k=2, 3, ..., n.
By (1.2) and (2.2),

Bnek(x)= :
k

j=0

a( j, k, n) x j, (2.12)

where

a( j, k, n)=\ n
j + 2 j

1�nek(0)

=
S(k, j) n !
nk(n& j)!

, 0� j�k�n. (2.13)

Note that

a(k, k, n)=* (n)
k , 0�k�n. (2.14)

Express the eigenfunctions in the form

p (n)
k (x)= :

k

r=0

c(r, k, n) xr, c(k, k, n) :=1.
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Then the eigenfunction equation (2.1) gives

* (n)
k :

k

s=0

c(s, k, n) xs= :
k

r=0

c(r, k, n) :
r

s=0

a(s, r, n) xs

= :
k

s=0

:
k

r=s

c(r, k, n) a(s, r, n) xs.

Equating the coefficients of xs above gives

* (n)
k c(s, k, n)= :

k

r=s

c(r, k, n) a(s, r, n).

Into this substitute s=k& j and r=k&i, to obtain

* (n)
k c(k& j, k, n)= :

j

i=0

c(k&i, k, n) a(k& j, k&i, n),

which, for k>1, can be solved for c(k& j, k, n) to give

c(k& j, k, n)=
1

* (n)
k &a(k& j, k& j, n)

_ :
j&1

i=0

c(k&i, k, n) a(k& j, k&i, n), j=1, ..., k.

Equation (2.7) now follows from this using (2.5) and (2.13). Taking j=1 in
(2.7) gives

c(k&1, k, n)=
S(k, k&1)

&k+1
=&

k
2

, (2.15)

which is (2.6). Using (2.9), the biorthogonality condition +k( pi)=$ ik can
be written as

:
n

j=0

p (n)
i \ j

n+ v( j, k, n)=$ik ,

i.e., PV=I, and so V=P&1.
Let R be x [ 1&x, i.e., reflection about the point 1�2. From (1.1), it

follows that

Bn( f b R)=(Bn f ) b R, (2.16)
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FIG. 1. The eigenfunctions p (6)
k , k=0, ..., 6 for the Bernstein operator B6 (scaled to have

the same absolute maxima). Note the symmetries and the interlacing of the zeros.

so that

Bn( p (n)
k b R)=(Bn p (n)

k ) b R=* (n)
k ( p (n)

k b R),

and p(n)
k b R is a * (n)

k -eigenfunction. For k=0, 1 the symmetry property of
p(n)

k is obvious, and for k�2 the eigenfunction p (n)
k b R must be a scalar

multiple of p (n)
k (the eigenspace is 1-dimensional), which by equating

powers of xk must be

p (n)
k =(&1)k p (n)

k b R. (2.17)

In other words, p (n)
k is even (resp. odd) about the point 1�2 when k is even

(resp. odd). In particular, the zeros of p (n)
k are symmetric about 1�2.

Similarly, (2.16) implies that

:
n

k=0

* (n)
k p (n)

k + (n)
k ( f b R)= :

n

k=0

* (n)
k ( p (n)

k b R) + (n)
k ( f )

= :
n

k=0

* (n)
k (&1)k p (n)

k + (n)
k ( f ),

139EIGENSTRUCTURE OF BERNSTEIN OPERATOR



and equating coefficients of p(n)
k in the above gives

+ (n)
k ( f )=(&1)k + (n)

k ( f b R). (2.18)

Taking j=k in (2.7) and using S(m, 0)=0, m�1, gives

c(0, k, n)=0, k�2.

Hence, for k�2, x=0 is a zero of p (n)
k , and by the symmetry

property (2.17) so is x=1. Further, when k is odd the symmetry property
of the zeros implies that x=1�2 must be a zero of p (n)

k , which proves the
factorisations (2.11). This completes the proof. K

A list of the first few eigenfunctions and their dual functionals and an
explicit formula for V=P&1 is given in the Appendix. The eigenfunctions
of B6 are depicted in Fig. 1.

3. ZEROS OF THE EIGENFUNCTIONS

Next we determine the distribution of roots of the eigenfunctions by
using the theory of oscillating kernels (total positivity). The kernel defining
the Bernstein operator

Kn(k, x) :=\n
k+ xk(1&x)n&k (3.1)

is extended totally positive ETP(x) in k=0, 1, ..., n and 0<x<1 (see
Karlin [K68, p. 298]). The current theory of totally positive kernels (see
the survey of Pinkus [P96]) cannot be applied directly, since this kernel is
discrete in the first variable and continuous in the second (a case not yet
considered), and it is not totally positive if the values x=0, 1 are allowed.
We circumvent these difficulties by considering the truncated Bernstein
operator B_

n defined by

B_
n f (x) := :

n&1

k=1
\n

k+ xk(1&x)n&k f \k
n+ , n=2, 3, ..., (3.2)

as a matrix operator.

Theorem 3.3 (Zeros of the eigenfunctions). The eigenfunction p (n)
k ,

k=0, 1, ..., n, has k simple real roots contained in [0, 1], which we denote by

! (n)
1, k<! (n)

2, k< } } } <! (n)
k, k .

140 COOPER AND WALDRON



More generally, for any nontrivial (am1
, ..., am2

), 2�m1�m2�n,

m1�Z \ :

m2

k=m1

ak p (n)
k +�m2 ,

where Z counts the number of zeros in [0, 1]. The zeros are symmetric about
1�2, i.e.,

! (n)
i, k+! (n)

k+1&i, k=1, \i. (3.4)

For k�2, there are common roots of 0 and 1, i.e.,

!(n)
1, k=0, ! (n)

k, k=1, k�2, (3.5)

and the roots inside (0, 1) satisfy the inclusions

i&1
n

<! (n)
i, k<1&

(k&i)
n

, 2�i�k&1. (3.6)

Proof. The result is clearly true for k=0, 1, and (3.4), (3.5) follow from
(2.11). We now consider the case k�2. Since p (n)

k vanishes at 0 and 1,

B_
n p (n)

k =Bn p (n)
k =* (n)

k p (n)
k , k=2, 3, ..., n,

and so the eigenvalues of B_
n are * (n)

k , k=2, ..., n, with p (n)
k a basis for the

corresponding 1-dimensional eigenspace. Consider the matrix representa-
tion of B_

n

A=[aij]: Rn&1 � Rn&1: ( f (i�n))n&1
i=1 [ (B_

n f (i�n))n&1
i=1 (3.7)

which is given by

aij :=\ n
j + (i�n) j (1&i�n)n& j.

A is an oscillation matrix, i.e., is totally positive and invertible, with ai, i+1 ,
ai+1, i>0 (see [P96, Proposition 5.1]). Hence by the (Perron�Frobenius)
spectral theory of such matrices (see [P96, Theorem 5.2]) it follows that its
eigenvectors ( p (n)

k (i�n))n&1
i=1 , k=2, 3, ..., n, satisfy

r&2�S& \ :
s

k=r

ck p (n)
k +

�S+ \ :
s

k=r

ck p (n)
k +�s&2, 2�r�s�n (some ck {0),
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where S&( f ), S +( f ) count the number of sign changes in the sequence

f (1�n), f (2�n), ..., f ((n&1)�n)

with zero terms discarded (respectively assigned arbitrary values \1). In
particular, the eigenvector ( p (n)

k (i�n))n&1
i=1 has k&2 strong sign changes, and

so in addition to 0, 1, the eigenfunction p (n)
k has k&2 real roots inside

(0, 1). Clearly, ! (n)
2, k> 1

n , ! (n)
2, k> 2

n , ..., i.e.,

! (n)
i, k>

i&1
n

, 2�i�k&1,

and similarly (or by symmetry) we obtain the other half of (3.6). K

Remark. When k is large with respect to n, (3.6) implies that the roots
of p (n)

k are nearly evenly spaced. For example, when k=n we have i&1
n <

!(n)
i, n< i

n , for 2�i�n&1.

Interlacing of Zeros

Numerical evidence suggests that the zeros of the eigenfunctions inter-
lace, that is,

! (n)
j, k+1<! (n)

j, k<! (n)
j+1, k+1 , 1< j<k. (3.8)

The classical theorems for interlacing of eigenvectors and eigenfunctions of
totally positive matrices and kernels cannot be applied here, where the

FIG. 2. The interlacing of the zeros of the piecewise linear interpolants to p (6)
5 , p (6)

6 .
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kernel (3.1) is discrete in the first variable and continuous in the second (a
case not yet considered), and is not totally positive if the values x=0, 1 are
allowed. By Ando [A87, Theorem 6.3], it follows that the nodes of con-
secutive eigenvectors ( p (n)

k (i�n))n&1
i=1 are interlacing, in the sense that zeros

of the piecewise interpolants indicated in Fig. 1 are. Unfortunately, this is
not enough to conclude that the roots of consecutive p (n)

k are interlacing.
This is the subject of further investigation.

4. ASYMPTOTICS OF THE EIGENFUNCTIONS AND THEIR
DUAL FUNCTIONALS

The Limiting Eigenfunctions

We now show that the sequence of eigenfunctions p(n)
k converges as

n � �.

Theorem 4.1 (Limits of the eigenfunctions). For 0� j�k,

lim
n � �

c( j, k, n)=c*( j, k), (4.2)

where

c*(0, 1) := &
1
2

, c*( j, k) := `
k& j

i=1

(k+1&i)(k&i)
i(i&2k+1)

j{0, k{1. (4.3)

In other words, p (n)
k converges uniformly on [0, 1] to pk* # 6k as n � �,

where

pk*(x) := :
k

j=0

c*( j, k) x j=xk&
k
2

xk&1+
k(k&1)(k&2)

4(2k&3)
xk&2& } } } . (4.4)

Proof. Since p (n)
0 (x)=1= p0*(x), p (n)

1 (x)=x&1�2= p1*(x), it is sufficient
to prove the result for k�2. To show this we prove by strong induction on
j and k�2 that limn � � c(k& j, k, n) exists and is given by (4.3). Since
c(k, k, n)=1, this result holds for j=0 and all values of k (where as usual
the empty product in (4.3) is interpreted as 1). Suppose it is true for
limn � � c(k&i, k, n), i=0, ..., j&1, where 0< j�k. Since

(n&k+1) j&n j= 1
2 j( j+2k+1) n j&1+lower order powers of n, j>0,

taking the limit as n � � of both sides of

c(k& j, k, n)= :
j&1

i=0

niS(k&i, k& j) c(k&i, k, n)
(n&k+1) j&n j
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and using the induction hypothesis gives

lim
n � �

c(k& j, k, n)=
2S(k& j+1, k& j)

j( j&2k+1)
c*(k& j+1, k)

=
(k+1& j)(k& j)

j( j&2k+1)
`
j&1

i=1

(k+1&i)(k&i)
i(i&2k+1)

= `
j

i=1

(k+1&i)(k&i)
i(i&2k+1)

,

which completes the induction. K

We now show the pk* are closely related to the Jacobi polynomials P (:, ;)
k .

These are by definition the orthogonal polynomials with respect to the
weight (1&t): (1+t); on the interval t # [&1, 1], see, e.g., [E53, Vol. 2,
pp. 168�173].

Theorem 4.5 (Identification of the pk*). It is immediate that

p0*(x)=1, p1*(x)=x&1�2. (4.6)

Moreover,

pk*(x)=
k ! (k&2)!
(2k&2)!

x(x&1) P (1, 1)
k&2(2x&1), k�2. (4.7)

Proof. Suppose that k�2. Then

c*( j, k)= `
k& j

i=1

(k+1&i)(k&i)
i(i&2k+1)

=
(&k)k& j (1&k)k& j

(k& j)! (2&2k)k& j
,

and so, since c*(0, k)=0,

pk*(x)= :
k

j=0

c*( j, k) x j= :
k

j=1

(&k)k& j (1&k)k& j

(k& j)! (2&2k)k& j
x j

=x :
k&1

j=0

(&k)k&1& j (1&k)k&1& j

(k&1& j)! (2&2k)k&1& j
x j.

Next use

(a)n& j=
(a)n (&1) j

(1&a&n)j
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with n=k&1 to obtain

pk*(x)=x
(&k)k&1 (1&k)k&1

(k&1)! (2&2k)k&1

:
k&1

j=0

(1&k) j (k) j

(2) j j !
x j

=x(&1)k&1 k ! (k&1)!
(2k&2)! 2F1(1&k, k; 2; x).

Apply Euler's transformation [E53, Vol. 1, p. 64(23)] to get

pk*(x)=x(x&1)(&1)k k ! (k&1)!
(2k&2)! 2 F1(2&k, k+1; 2; x)

=x(x&1)
k ! (k&2)!
(2k&2)!

P (1, 1)
k&2 (2x&1). (4.8)

This proves the result. K

It is interesting to compare this result with the spectral properties of the
Bernstein�Durrmeyer operator, which is a self-adjoint operator on L2[0, 1],
defined by

Mn f (x) := :
n

k=0

pk, n(x)(n+1) |
1

0
f (t) pk, n(t) dt, 0�x�1,

where

pk, n(x) :=\n
k+ xk(1&x)n&k, 0�k�n.

Derriennic [D81] showed that the eigenvalues of Mn are

*k, n=
n !

(n&k)!
(n+1)!

(n+k+1)!
, k=0, 1, ..., n,

and the corresponding eigenfunctions are the Legendre polynomials

Pk(2x&1) :=P (0, 0)
k (2x&1), k=0, 1, ..., n.

Notice that these are independent of n. Similarly, in [BX91] it was shown
for Bernstein�Durrmeyer operators with Jacobi weights w(:, ;)(x) :=
x:(1&x);, :, ;>&1, the eigenfunctions are the Jacobi polynomials
P(:, ;)

k (2x&1).
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The Limiting Dual Functionals
By (1.3) and Theorem 4.5, it follows that

* (n)
k � 1, p (n)

k � pk*, n � �,

whilst the Weierstrass density theorem implies for all f # C[0, 1] that

Bn f = :
n

k=0

* (n)
k p (n)

k + (n)
k ( f ) � f, n � �.

We now use these facts to investigate the limiting behaviour of + (n)
k ( f ) as

n � �. Let L denote the operator of linear interpolation at 0 and 1, i.e.,

Lf (x) :=(1&x) f (0)+xf (1). (4.9)

Lemma 4.10 (Orthogonal expansion). Each f # C[0, 1] satisfying

|
1

0
( f (x)&Lf (x))2 dx

x(1&x)
<�, (4.11)

or equivalently

|
1

0

( f (x)& f (0))2

x
dx<�, |

1

0

( f (x)& f (1))2

1&x
dx<�, (4.12)

can be uniquely represented by a series of the form

f = :
�

k=0

pk*+k*( f ), (4.13)

where the convergence of ��
k=2 pk*+k*( f ) above is in the L2(dx�x(1&x))-norm,

and the linear functionals +k* are defined by

+0*( f ) :=( f (0)+ f (1))�2, +1*( f ) :=f (1)& f (0), (4.14)

+k*( f ) := 1
2 \2k

k +{(&1)k f (0)+ f (1)&k |
1

0
f (x) P(1, 1)

k&2 (2x&1) dx= ,

k�2. (4.15)

If f is differentiable on [0, 1], then

+k*( f )= 1
2 \2k

k + |
1

0
f $(x) Pk&1(2x&1) dx, k�2, (4.16)

where [Pk(x)]k�0 are the Legendre polynomials.
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Proof. Define inner products by

(g, h) :=|
1

0
g(x) h(x) dx, (g, h) :=|

1

0
g(x) h(x) x(1&x) dx.

Suppose that f satisfies the hypotheses of the lemma, and let

g(x) :=
f (x)&Lf (x)

x(1&x)
.

Then g # L2(x(1&x) dx, [0, 1]) and thus has a unique representation

g= :
�

j=0

(g, gj ) gj ,

where

gj (x) :=�( j+2)(2 j+3)
j+1

P (1, 1)
j (2x&1), j=0, 1, 2, ...

are orthonormal Jacobi polynomials with respect to the weight function
x(1&x) on [0, 1]. This can be rewritten as

f (x)&Lf (x)
x(1&x)

= :
�

j=0

(g, gj ) gj (x)= :
�

j=0

( f&Lf, gj) gj (x)

= :
�

j=0

( j+2)(2 j+3)
j+1

( f&Lf, P (1, 1)
j (2 } &1)) P (1, 1)

j (2x&1)

=
1

x(x&1)
:
�

j=0

j+2
2 \2 j+4

j+2 + ( f&Lf, P (1, 1)
j (2 } &1)) p*j+2(x),

which gives

f (x)=Lf (x)& :
�

k=2

k
2 \

2k
k + ( f&Lf, P (1, 1)

k&2 (2 } &1)) pk*(x). (4.17)

Since

Lf (x)=
f (0)+ f (1)

2
+( f (1)& f (0))(x&1�2)

=+0*( f ) p0*(x)++1*( f ) p1*(x),
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and

(Lf, P (1, 1)
k&2 (2 } &1))=f (0) |

1

0
(1&x) P (1, 1)

(k&2)(2x&1) dx

+ f (1) |
1

0
xP (1, 1)

k&2 (2x&1) dx

=f (0)
(&1)k

k
+

f (1)
k

,

we obtain (4.13) from (4.17), with the convergence as asserted.
Equation (4.16) follows from (4.15) using

P(1, 1)
k&2 (2x&1)=

2
k

P$k&1(2x&1), k�2,

and integrating by parts. K

Clearly, condition (4.11) is satisfied when f is differentiable at 0 and 1,
and so we have

f = :
s

k=0

pk*+k*( f ), \f # 6s , (4.18)

and

+k*(6k&1)=0, k=1, 2, ... . (4.19)

These facts are now used to investigate the limiting behaviour of the dual
functionals.

Theorem 4.20 (Limits of the dual functionals). For every f # 6,

lim
n � �

+ (n)
k ( f )=+k*( f ). (4.21)

Proof. We prove (4.21) holds for f # 6k+r , r=0, 1, 2, ..., by strong
induction on r (with the result holding for all k). Recall that

* (n)
k � 1, n � �. (4.22)

First suppose f # 6k (r=0). Because Bn is degree reducing, we have

Bn f = :
k

j=0

* (n)
j p (n)

j + (n)
j ( f ) � f = :

k

j=0

pj*+j*( f ), n � �. (4.23)
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Since the convergence in (4.23) takes place in the finite-dimensional space
6k , we may equate coefficients of xk to obtain

* (n)
k + (n)

k ( f ) � +k*( f ), n � �, (4.24)

which by (4.22) gives (4.21).
Now suppose f # 6k+r . Since Bn is degree reducing, we have

Bn f = :
k+r

j=0

* (n)
j p (n)

j + (n)
j ( f ) � f = :

k+r

j=0

p j*+ j*( f ), n � �.

Since the convergence above is in 6k+r , equating coefficients of xk gives

* (n)
k + (n)

k ( f )+ :
r

j=1

* (n)
k+ j c(k, k+ j, n) + (n)

k+ j ( f )

� +k*( f )+ :
r

j=1

c*(k, k+ j) +*k+ j ( f ), n � �. (4.25)

By the inductive hypothesis together with (4.2) and (4.22), we have

:
r

j=1

* (n)
k+ jc(k, k+ j, n) + (n)

k+ j ( f ) � :
r

j=1

c*(k, k+ j) +*k+ j ( f ),

and so (4.25) gives (4.24) as before. This completes the induction. K

The first few +k* are listed in the Appendix.

Remark. We conjecture that (4.21) holds for all f # C[0, 1], which is
equivalent to the sequence (&+ (n)

k &)�
n=0 being bounded.

5. APPLICATION TO ITERATES OF THE BERNSTEIN OPERATOR

There have been a number of papers dealing with iterates of the
Bernstein operator: Kelisky and Rivlin [KR67], Karlin and Ziegler
[KZ70], Micchelli [M73], da Silva [Si85], Gonska and Zhou [GZ94],
Sevy [Se95], and Wenz [W97]. We now investigate those results relevant
to this work in terms of the diagonal form of Bn . By Theorem 2.3,

B j
n f = :

n

k=0

(* (n)
k ) j p (n)

k + (n)
k ( f ), \f # C[0, 1], j=0, 1, 2, ... . (5.1)

Theorem 1 of [KR67] is that

lim
j � �

B j
n f =Lf, \f # C[0, 1],
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where Lf is defined by (4.9). This follows immediately from (5.1) since
*(n)

k <1, k�2. More generally we have:

Corollary 5.2 (Limits for n fixed). Suppose (gj) is a sequence of
polynomials, with

lim
j � �

gj (* (n)
k )=G(k, n), k=0, 1, ..., n,

then

lim
j � �

gj (Bn) f= :
n

k=0

G(k, n) p (n)
k + (n)

k ( f ), \f # C[0, 1], (5.3)

with the convergence above in the uniform norm.

Proof. The appropriate linear combination of (5.1) gives

gj (Bn) f= :
n

k=0

gj (* (n)
k ) p(n)

k + (n)
k ( f ), \f # C[0, 1]. (5.4)

Taking the limit j � � then gives (5.3). K

Let Ln denote the operator of Lagrange interpolation at the equally
spaced points [0, 1�n, 2�n, ..., 1],

Ln f (x) := :
n

k=0 {`
n

j=0
j{k

x&
j
n

k
n

&
j
n= f \k

n+ .

The biorthogonality condition (2.8) implies that f [ �n
k=0 p (n)

k +(n)
k ( f )

reproduces 6n , and so

Ln f = :
n

k=0

p (n)
k + (n)

k (Ln f )= :
n

k=0

p (n)
k + (n)

k ( f ). (5.5)

In Sevy [Se95] the particular sequence of polynomials

gj (x) :=1&(1&x) j, j=1, 2, ...

was considered. For these

lim
j � �

gj (* (n)
k )=1, (5.6)
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(since 0�1&* (n)
k <1) so that Corollary 5.2, together with (5.5), gives

lim
j � �

(1&(1&Bn) j) f= :
n

k=0

p (n)
k + (n)

k ( f )=Ln f, \f # C[0, 1], (5.7)

which is [Se95, Theorem 1] (also see Wenz [W97, Theorem 3] for a
generalisation to the Bernstein�Schoenberg operator). The above operator
has been studied by many, sometimes viewed as an iterated Boolean sum
of Bn

� j Bn= g j (Bn)=1&(1&Bn) j

(see Gonska and Zhou [GZ94] and the references therein). Since

1&* (n)
k =O \1

n+ , n � �,

using (5.4) and (5.5) one obtains that \f # C[0, 1]

"Ln f &� j Bn f "� =" :
n

k=0

(1&* (n)
k ) j p (n)

k + (n)
k ( f )"�

=&Ln f &� O \ 1
n j+ , n � �. (5.8)

From (5.8), and its pointwise analog, it is then possible to obtain approxi-
mation order results for � j Bn (large n) by appropriately modifying those
for Ln (cf. [GZ94, Theorem 1]).

Lemma 5.9 (Limits of powers of the eigenvalues). Suppose that jn is a
sequence of positive integers with

lim
n � �

jn

n
=t, (5.10)

then

lim
n � �

(* (n)
k ) jn=e

&1
2

k(k&1) t
, \k, 0�t<�, (5.11)

and

lim
n � �

(* (n)
k ) jn=0, \k�2, t=�. (5.12)
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Proof. Let

y=(* (n)
k ) jn&nt=\\1&

1
n+\1&

2
n+ } } } \1&

k&1
n ++

jn&nt

.

Then

log y = ( jn&nt) \log \1&
1
n++log \1&

2
n++ } } } +log \1&

k&1
n ++

= \ jn

n
&t+\&

k(k&1)
2

+O \1
n++

� 0, (n � �).

Therefore

lim
n � �

(* (n)
k ) jn&nt= lim

n � �
y=1. (5.13)

But

lim
n � �

(* (n)
k )nt= lim

n � � \1&
1
n+

nt

\1&
2
n+

nt

} } } \1&
k&1

n +
nt

=e
&1

2
k(k&1) t

. (5.14)

Combining (5.13) and (5.14) gives (5.11). Let k � � to obtain (5.12). K

Theorem 2 of [KR67] shows that if (5.10) holds, then B jn
n (es) converges

to a polynomial of degree s which is given explicitly. We offer the following
extension of this result.

Corollary 5.15 (Limits for 0�t��). Suppose that

lim
n � �

jn

n
=t,

then for 0�t<�

lim
n � �

B jn
n f= :

s

k=0

e
&1

2
k(k&1) t

pk*+k*( f )

= :
�

k=0

e
&1

2
k(k&1) t

pk*+k*( f ), \f # 6s , (5.16)
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and for t=�

lim
n � �

B jn
n f =Lf = :

1

k=0

pk*+k*( f ) \f # 6, (5.17)

with the convergence in (5.16) and (5.17) being in the uniform norm.

Proof. Suppose that f # 6s . Since Bn is degree reducing (5.1) gives

B jn
n f = :

s

k=0

(* (n)
k ) jn p (n)

k + (n)
k ( f ), n�s.

Take the limit as n � � in the above and use Lemma 5.9, Theorem 4.1,
and Theorem 4.20 to obtain (5.17) and the first equality in (5.16). The
second equality in (5.16) follows from (4.19). K

Since the operators B jn
n : C[0, 1] � C[0, 1] have norm 1 and the polyno-

mials are dense in C[0, 1], the limits in (5.16) and (5.17) exist for all
f # C[0, 1]. It has been shown that there exists a semigroup [Bt : t�0] of
class (C0) on C[0, 1] such that

lim
n � �

B jn
n f =Bt f, whenever lim

n � �

jn

n
=t, (5.18)

for all t�0 and f # C[0, 1], and [Bt : t�0] is a positive contraction semi-
group (see Karlin and Ziegler [KZ70] and Micchelli [M73, Theorem 3.1]).
Corollary 5.15 gives an explicit representation of this semigroup on the
polynomials. This representation can be extended trivially to C[0, 1] in the
case (5.17) and in the case (5.16) as follows.

Corollary 5.19 (Representation of [Bt]). The semigroup [Bt : t�0]
defined by (5.18) has the representation

Bt f (x)=Lf (x)+x(1&x) |
1

0
Gt(x, y)( f &Lf )( y) dy, \f # C[0, 1],

(5.20)

where the kernel Gt is given by

Gt(x, y) := :
�

k=2

k(2k&1)
k&1

e
&1

2
k(k&1) t

P (1, 1)
k&2(2x&1) P (1, 1)

k&2 (2y&1).

(5.21)
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Proof. Suppose first that f # 6. From (4.14), +0*( f &Lf )=+1*( f &Lf )
=0, while by (4.19), +k*(Lf )=0, k�2. Therefore (5.16) gives

Bt f=Bt(Lf )+Bt( f &Lf )

= :
�

k=0

e
&1

2
k(k&1) t

pk*+k*(Lf )+ :
�

k=0

e
&1

2
k(k&1) t

pk*+k*( f &Lf )

= :
1

k=0

pk*+k*(Lf )+ :
�

k=2

e
&1

2
k(k&1) t

pk*+k*( f &Lf ).

By (4.14) and (4.15), this becomes

Bt f =Lf + :
�

k=2

&k
2 \2k

k + e
&1

2
k(k&1) t

pk*(x) |
1

0
P (1, 1)

k&2 (2y&1)( f &Lf )( y) dy.

Using the dominated convergence theorem and Theorem 4.5, this gives

Bt f (x)=Lf (x)+x(1&x) |
1

0
:
�

k=2

k(2k&1)
k&1

e
&1

2
k(k&1) t

_P(1, 1)
k&2 (2x&1) P (1, 1)

k&2(2y&1)( f &Lf )( y) dy.

This proves the result for f # 6. The extension of (5.20) to all f # C[0, 1]
now follows from the density of 6 in C[0, 1]. K

This representation of the semigroup [Bt] was given in Karlin and
Ziegler [KZ70, (4.7)] and da Silva [Si85] (where total positivity proper-
ties of the kernel Gt are investigated).

The infinitesimal generator of the semigroup [Bt] is

Af := lim
t � 0+

Bt f &f
t

,

whenever this limit exists. On the polynomials (4.13) and (5.16) give

Af= lim
t � 0+

:
�

k=2

e
&1

2
k(k&1) t

&1
t

pk*+k*( f )

= :
�

k=2

&
1
2

k(k&1) pk*+k*( f ), \f # 6. (5.22)

In [KZ70] it is shown that

Af (x)= 1
2x(1&x) D2f (x), \f # C 2[0, 1]. (5.23)
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Since

x(x&1) D2pk*(x)=k(k&1) pk*(x), \k�2,

it is clear (5.22) and (5.23) are consistent. It is possible to extend (5.22) to
C[0, 1] in the following way.

Corollary 5.24 (Infinitesimal generator of [Bt]). The infinitesimal
generator A of the semigroup [Bt : t�0] defined by (5.18) has the
representation

Af (x)= 1
2x(x&1) |

1

0
G(x, y)( f &Lf )( y) dy, \f # C[0, 1], (5.25)

where the kernel G is given by

G(x, y) := :
�

k=2

k2(2k&1) P (1, 1)
k&2(2x&1) P (1, 1)

k&2 (2y&1). (5.26)

It can also be represented by (5.22) and (5.23).

Proof. Suppose first that f # 6. It follows from (5.22) that

Af =A(Lf )+A( f &Lf )=&1
2 :

�

k=2

k(k&1) pk*+k*( f &Lf ),

and so Theorem 4.5 and (4.15) give

Af (x)= &
1
2

:
�

k=2

k(k&1) pk*(x)
&k

2 \2k
k + |

1

0
P(1, 1)

k&2 (2y&1)( f &Lf )( y) dy

=
1
2

x(x&1) |
1

0
:
�

k=2

k2(2k&1) P (1, 1)
k&2(2x&1)

_P (1, 1)
k&2 (2y&1)( f &Lf )( y) dy.

This gives (5.25) for f # 6. The extension of (5.25) to all f # C[0, 1] now
follows from the density of 6 in C[0, 1]. K

Iterates of All Orders

As in [KR67, Sect. 4], it is possible to use (5.1) to define the iterates of
Bn of all orders &�<t<� in a manner consistent with the case when t
is a nonnegative integer, namely

Bt
n f := :

n

k=0

(* (n)
k )t p (n)

k + (n)
k ( f ), \f # C[0, 1].
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By (5.5), the iterate B0
n equals Ln (Lagrange interpolation at equally spaced

points, which is the identity on 6n). The inverse B&1
n restricted to 6n has

been studied by Sablonnie� re [S92] (see next section).

6. APPLICATION TO BERNSTEIN QUASI-INTERPOLANTS

By (5.5), the operator of Lagrange interpolation at equally spaced points
can be written as

Ln f = :
n

k=0

p (n)
k + (n)

k ( f ), \f # C[0, 1],

while the Bernstein operator is

Bn&f = :
n

k=0

* (n)
k p (n)

k + (n)
k ( f ), \f # C[0, 1].

In this way the Bernstein operator can be thought of as being obtained
from the Lagrange interpolant by damping out the p (n)

k coefficient
(frequency) by the amount 0<* (n)

k <1, k�2. The failure of Lagrange inter-
polation at n equally spaced points to converge for all continuous functions
(whilst the Bernstein approximants do) might then be explained by its
failure to sufficiently damp out the highly oscillatory polynomials p (n)

k

(cf. (3.6)). It is then natural to consider operators of the form

An, : f = :
n

k=0

: (n)
k p (n)

k + (n)
k ( f ), \f # C[0, 1], (6.1)

for other amounts of damping : (n)
k # R. Remember that An, : f depends only

on the values f (0), f (1�n), ..., f (1). These operators are automatically degree
reducing and reproduce the linear polynomials if and only if : (n)

0 =: (n)
1 =1.

Indeed (6.1) is the diagonalised form of these operators. The linear com-
binations of iterates of the Bernstein operator considered in Section 6
(including iterated Boolean sums) are operators of this type. Presumably,
by choosing the quantities : (n)

k appropriately it should be possible to con-
struct approximation processes inheriting some of the desirable properties
of Ln (such as interpolation) and of Bn (like convergence as n � � for all
f # C[0, 1]). We now suggest a few possibilities.

1. Continuous families. The eigenvalues of Ln could be continuously
transformed via some parameter 0�t�1 into those for Bn , giving a family
of operators An, t , which depends continuously on t, with endpoints
An, 0=Ln and An, 1=Bn . Depending on the properties of the operator
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desired (or the smoothness of f ) an appropriate value of t could then
be chosen. A couple of such schemes for changing the eigenvalues (and
corresponding operator) are

An, t f := :
n

k=0

((1&t)+t* (n)
k ) p (n)

k + (n)
k ( f )

=(1&t) Ln f +tBn f, \f # C[0, 1],

and

An, t f := :
n

k=0

(* (n)
k )t p (n)

k + (n)
k ( f ), \f # C[0, 1].

2. Polynomial reproduction. The first j+1 (0� j�n) eigenvalues could
be set to 1. This then gives an operator which reproduces 6j , e.g.,

An, j f := :
j

k=0

p (n)
k + (n)

k ( f )+ :
n

k= j+1

* (n)
k p (n)

k + (n)
k ( f ), \f # C[0, 1].

For this choice An, 0=An, 1=Bn and An, n=Ln . This property, together
with reproduction of 6j , is shared with the left Bernstein quasi-interpolant
of order j of Sablonnie� re [S92],

B ( j)
n :=A ( j)

n b Bn ,

where A ( j)
n is a truncated version of B&1

n thought of as a differential
operator on 6n . It is not clear to the authors at this point how these two
similar operators are related.

Operators which reproduce 6 j can also be obtained by taking affine
combinations of Bernstein operators Bn of various degrees n, see, e.g.,
[B53, DT87, Z95].

3. Adaptive methods. Since p (n)
k is an eigenfunction of (6.1) with eigen-

value : (n)
k the limiting properties of p (n)

k and + (n)
k imply that for An, : f to

converge as n � � for all continuous f ( pk* in particular) it is necessary
that :(n)

k � 1. If the rate of convergence of : (n)
k � 1 is too fast (as in the case

of Lagrange interpolation Ln , when : (n)
k =1) then An, : f fails to converge

for some f. Hence it seems the approximation properties of An, : (large n)
are controlled by the rates at which : (n)

k � 1, as n � �.
A more detailed analysis of these questions seems worthy of further

study.

157EIGENSTRUCTURE OF BERNSTEIN OPERATOR



7. THE SPECTRUM OF THE KANTOROVICH OPERATOR

Recall the Kantorovich operator Kn : L1[0, 1] � C[0, 1], n=1, 2, ...,
which is defined by

Kn f (x) := :
n

k=0
\n

k+ xk(1&x)n&k (n+1) |
(k+1)�(n+1)

k�(n+1)
f (t) dt.

It satisfies

Kn(Df )=D(Bn+1 f ), \f # C1[0, 1],

and so in particular

Kn(Dp (n+1)
k+1 )=D(Bn+1 p (n+1)

k+1 )=* (n+1)
k+1 (Dp(n+1)

k+1 ), k=0, 1, ..., n;

i.e., * (n+1)
k+1 is an eigenvalue of Kn with corresponding eigenfunction Dp (n+1)

k+1 .

Corollary 7.1 (Eigenstructure of Kn). The eigenvalues of the Kantorovich
operator Kn are

& (n)
k :=* (n+1)

k+1 =
n !

(n&k)!
1

(n+1)k , k=0, 1, ..., n,

and the corresponding eigenfunctions are polynomials of exact degree k given
by

q (n)
k :=Dp (n+1)

k+1 (these have leading coefficient k+1).

The eigenvalues of Kn are distinct

& (n)
0 =1>& (n)

1 =
n

(n+1)
>& (n)

2 =
n(n&1)
(n+1)2> } } }

>& (n)
n =

n !
(n+1)n>0.

Many of the previous results for the Bernstein operator can now be adapted
to the Kantorovich operator. For example, its diagonal form is

Kn f = :
n

k=0

& (n)
k q (n)

k + (n+1)
k+1 (D&1f ), \f # L1[0, 1],
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where

D&1f (x) :=|
x

0
f,

and the analogue of (5.7) is

lim
j � �

(1&(1&Kn) j) f=D(Ln+1(D&1f )), \f # L1[0, 1]. (7.2)

The limit in (7.2) is the area matching map which interpolates from 6n to
the data

|
1�(n+1)

0
f, |

2�(n+1)

1�(n+1)
f, |

3�(n+1)

2�(n+1)
f, } } } , |

n�(n+1)

(n&1)�(n+1)
f, |

1

n�(n+1)
f.

8. MULTIVARIATE BERNSTEIN OPERATORS

The eigenstructure of the tensor product Bernstein operators (see [L53,
p. 51]) can be deduced from that of the univariate operator in the usual
way. For simplicity, we illustrate this for the bivariate tensor product
Bernstein operator Bn �Bm : C([0, 1]2) � C([0, 1]2), which is defined by

(Bn �Bm) f (x) := :
n

i=0

:
m

j=0 \
n
i +\

m
j + xi (1&x)n&i y j (1& y)m& j f \ i

n
,

j
m+ .

Corollary 8.1 (Eigenstructure of Bn �Bm). The eigenvalues of Bn �Bm

are

* (n, m)
i, j :=* (n)

i * (m)
j

=
n !

(n&i)!
m !

(m& j)!
1

nim j , i=0, 1, ..., n, j=0, 1, ..., m,

and the corresponding eigenfunctions p (n, m)
i, j are given by

p(n, m)
i, j (x, y) :=p (n)

i (x) p (m)
j ( y).

It follows from the analogue of (1.2) that the multivariate Bernstein
operator Bn on a simplex S/Rd (see [L53, p. 51]) has the same spectra as
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the univariate operator, and the *(n)
k -eigenspace has dimension ( k+d&1

d&1 ).
Thus it is diagonalisable. More detailed results, including computational
formulae and symmetry properties of the eigenspaces, can be found in
[CW99].

9. APPENDIX

The Eigenfunctions
The first four eigenfunctions are independent of n,

p (n)
0 (x)=1, p (n)

1 (x)=x&1�2,

p (n)
2 (x)=x(x&1), p (n)

3 (x)=x(x&1)(x&1�2),

and the others depend on n. Here are the next three eigenfunctions in the
factored form (2.11)

p (n)
4 (x)=x(x&1) \(x&1�2)2+

2&n
4(5n&6)+ ,

p (n)
5 (x)=x(x&1)(x&1�2) \(x&1�2)2+

8&3n
4(7n&12)+ ,

(9.1)

p (n)
6 (x)=x(x&1) \(x&1�2)4+

10&3n
2(9n&20)

(x&1�2)2

+
(n&2)(n&4)(6n2&23n+40)

16(9n&20)(14n3&71n2+154n&120)+ .

Using (2.7) the first few coefficients in (2.6) are

c(k, k, n)=1, 0�k�n,

c(k&1, k, n)=&
k
2

, 1�k�n,

(9.2)

c(k&2, k, n)=
1
24

k(k&1)(k&2)(6n+5&3k)
&k2+3k+2nk&2&3n

, 2�k�n,

c(k&3, k, n)=&
1
48

k(k&1)(k&2)(k&3)(2n+2&k)
&k2+3k+2nk&2&3n

, 3�k�n.

The Dual Functionals

The matrix P of Theorem 2.3 can be inverted as follows.
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Lemma 9.3 (Finding V ). The jth row of the matrix V=P&1 of
Theorem 2.3, whose kth column gives the coefficients of the dual functional
+(n)

k , i.e.,

+ (n)
k ( f )= :

n

j=0

v( j, k, n) f \ j
n+ , k=0, ..., n,

can be calculated using the recurrence

v( j, n, n)=(&1)n& j nn

j ! (n& j)!
,

v( j, n&k, n)=
(&1)n& j&k nn&k

(n& j&k)! j !
(9.4)

& :
k&1

s=0

k!
s !

ns&kv( j, n&s, n) c(n&k, n&s, n), k=1, ..., n,

where

1
(n&k& j)!

:=0, j>n&k.

Proof. Let l (n)
j be the (Lagrange) polynomial of degree n satisfying

l(n)
j (i�n)=$ij , i.e.,

l (n)
j (x) := `

n

i=0
i{ j

(x&i�n)
( j�n&i�n)

.

Apply Bn in the form (1.1) and in the diagonal form (2.4) to l (n)
j , and

equate the results to obtain

\n
j+ x j (1&x)n& j= :

n

k=0

* (n)
k p (n)

k (x) v( j, k, n), j=0, ..., n. (9.5)

Equating the coefficients of xn&k, k=0, ..., n, in (9.5) gives

(&1)n& j&k \n
j+\

n& j
n& j&k+

= :
k&1

s=0

* (n)
n&s v( j, n&s, n) c(n&k, n&s, n)+* (n)

n&kv( j, n&k, n).

For k=0 this gives the first equation in (9.4), and for k=1, ..., n this can
be solved for v( j, n&k, n) as
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v( j, n&k, n)=
1

* (n)
n&k {(&1)n& j&k \ n

j+\
n& j

n& j&k+
& :

k&1

s=0

* (n)
n&s v( j, n&s, n) c(n&k, n&s, n)=

=
(&1)n& j&k nn&k

j ! (n&k& j)!

& :
k&1

s=0

k !
s !

ns&kv( j, n&s, n) c(n&k, n&s, n),

giving (9.4). The columns of V correspond to the dual functionals +k , and
the rows of P to the eigenfunctions pk . K

The first few matrices V are

1�2 &1 2

\1�2
1�2

&1
1 + , \ 0 0 &4+ , \

1�2
0
0

1�2

&1
0
0
1

9�4
&9�4
&9�4

9�4

&9�2
27�2

&27�2
9�2 +1�2 1 2

1�2 &1 50�21 &16�3 32�3
0 0 &32�21 32�3 &128�3\ 0 0 &12�7 0 64 +0 0 &32�21 &32�3 &128�3

1�2 1 50�21 16�3 32�3

1�2 &1 375�152 &1625�276 625�48 &625�24
0 0 &175�152 2375�276 &625�16 3125�24\ 0
0

0
0

&25�19
&25�19

250�69
&250�69

625�24
625�24

&3125�12
3125�12 +0 0 &175�152 &2375�276 &625�16 &3125�24

1�2 1 375�152 1625�276 625�48 625�24

1�2 &1 2681�1060 &63�10 252�17 &162�5 324�5
0 0 &981�1060 36�5 &594�17 648�5 &1944�5
0 0 &225�212 9�2 108�17 &162 972\ 0 0 &115�106 0 468�17 0 &1296 +0 0 &225�212 &9�2 108�17 162 972
0 0 &981�1060 &36�5 &594�17 &648�5 &1944�5

1�2 1 2681�1060 63�10 252�17 162�5 324�5
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For example,

+ (4)
3 ( f )=&16�3 f (0)+32�3 f (1�4)+0 f (1�2)&32�3 f (3�4)+16�3 f (1).

The dual functionals can also be computed using the symmetry properties
of + (n)

k and p (n)
k . For example, the dual functional + (n)

n&1 , n�1 must come
from the 2-dimensional subspace (of span[ f [ f ( j�n) : j=0, 1, ..., n]) con-
sisting of those functionals which annihilate 6n&2 . A basis for this space is

[[0, 1�n, ..., (n&2)�n, (n&1)�n], [1�n, 2�n, ..., (n&1)�n, 1]].

Here [x0 , x1 , ..., xk] denotes the divided difference at the points x0 , x1 , ...,
xk , which if equally spaced equals

[x, x+h, x+2h, ..., x+kh] f

=
1

k ! hk 2k
h f (x)=

1
k ! hk :

k

i=0

(&1)k&i \k
i + f (x+ih). (9.6)

By the symmetry conditions (2.10) and (9.6), + (n)
n&1 must be a scalar

multiple of

[0, 1�n, ..., (n&2)�n, (n&1)�n]+[1�n, 2�n, ..., (n&1)�n, 1], (9.7)

which (by the symmetry conditions) annihilates p (n)
n . For (9.7) to satisfy the

condition + (n)
n&1( p(n)

n&1)=1, its scalar multiplier must be 1�2. Continuing to
argue along these lines leads to the following.

Theorem 9.8. The dual functionals in (2.4) can be expressed as follows:

+ (n)
0 ( f )=

1
2

( f (0)+ f (1)), n�0,

+ (n)
1 ( f )=f (1)& f (0), n�1,

+ (n)
n&3( f )=

1
8

n(n+1)
n2&6 _0,

1
n

, ...,
n&3

n & f

+
1
8

(3n+8)(n&3)
n2&6 _1

n
,
2
n

, ...,
n&2

n & f

+
1
8

(3n+8)(n&3)
n2&6 _2

n
,
3
n

, ...,
n&1

n & f

+
1
8

n(n+1)
n2&6 _3

n
,

4
n

, ..., 1& f, n�3,
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+ (n)
n&2( f )=

1
12

(n+1)(3n&2)
n2&2 _0,

1
n

, ...,
n&2

n & f

+
1
6

(3n+5)(n&2)
n2&2 _1

n
,
2
n

, ...,
n&1

n & f

+
1

12
(n+1)(3n&2)

n2&2 _2
n

,
3
n

, ..., 1& f, n�2,

+ (n)
n&1( f )=

1
2 \_0,

1
n

, ...,
n&1

n & f+_1
n

,
2
n

, ..., 1& f+ , n�1,

+ (n)
n ( f )=_0,

1
n

,
2
n

, ..., 1& f, n�0.

Formulae for + (n)
n&4 , + (n)

n&5 , ... can, in principle, also be obtained by this
method, but are more complicated. There appears to be no simple closed
form.

The Limiting Dual Functionals

Using (4.14) and (4.15) to compute the first few +k* gives

+0*( f )= 1
2 f (0)+ 1

2 f (1),

+1*( f )=& f (0)+ f (1),

+2*( f )=3 f (0)+3 f (1)&6 |
1

0
f (x) dx,

+3*( f )=&10 f (0)+10 f (1)&120 |
1

0
f (x)(x&1�2) dx,

+4*( f )=35 f (0)+35f (1)&2100 |
1

0
f (x)(x2&x+1�5) dx,

+5*( f )=&126 f (0)+126 f (1)&35280 |
1

0
f (x)(x3&3�2x2

+9�14x&1�14) dx,

+6*( f )=462 f (0)+462f (1)&582120 |
1

0
f (x)(x4&2x3

+4�3x2&1�3x+1�42) dx.
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